MATH 1 (02061/02062) 2019

Number

refers us to the
state or national standard

Priority Level

helps us prioritize time and interventions.

STANDARDS/AW Learning Objectives

Standards give us broad expectations. AWLOs describe local teaching expectations and are what we teach to address the standards.
describes the level at which the AWLOs describes the level at which the AWLO are written, providing guidance for
planning transformations. Boldfaced planning transformations. Boldfaced
depth is instructional goal and Social objectives are used to support goal.

ALGEBRA: CREATING EQUATIONS

ALGEBRA: CREATING EQUATIONS			
A.CED. 1	Mastery	Apply and extend previous understanding to create equations and inequalities in one variable and use them to solve problems.	
		Identify whether to use an equation or inequality.	Surface
		Identify the components of writing an equation or inequality; e.g. What is the constant or rate of change?	Surface
		Create the equation or inequality relating the information to a context; e.g., cell phone bill and spending money.	Deep

ALGEBRA: REASONING WITH EQUATIONS AND INEQUALITIES

A.REI. 2	Mastery	Apply and extend previous understanding to solve equations, inequalities, and compound inequalities in one variable, including literal equations and inequalities.	
		Solve two step equations and inequalities.	Surface
		Solve compound inequalities.	Deep
		Solve literal equations.	Deep
		Write a compound inequality from a real-world situation; e.g., How far can you drive if you only have so much money?	Transfer
A.REI. 3		Solve equations in one variable and give examples showing how extraneous solutions may arise.	
A.REI.3a	Essential	Solve rational, absolute value, and square roet equation.	
		Solve rational and absolute value equations.	Surface
		Show how extraneous solutions may arise.	Deep
A.REI. 6		Analyze and solve pairs of simultaneous linear equations.	
A.REI.6a	Enhanced	Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.	
		Understand a solution to a system of linear equations is the point where the lines intersect.	Surface
A.REI.6b	Essential	Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2+5$ and $3 x+2 y=6$ have no solution because $3 x$ $+2 y$ cannot simultaneously be 5 and 6 .	
		Solve a system of two linear equations by substitution.	Surface
		Solve a system of two linear equations by elimination.	Surface
		Solve a system of two linear equations by graphing.	Surface
		Choose the most appropriate method of solving.	Deep

Auburn Washburn	AWLOs	MATH 1 (02061/02062) 2019	GRADES 7-12
Number	Priority Level	STANDARDS/AW Learning Objectives	Instructional Depth
refers us to the state or national standard	helps us prioritize time and interventions. interventions.	Standards give us broad expectations. AWLOs describe local teaching expectations and are what we teach to adrress the standards.	describes the level at which the AWLOs are written, providing guidance for planning transformations. Boldfaced depth is instructional goal. Language and Social objectives are used to support goal.
A.REI. 10	Enhanced	Given two real-world situations, solve a system of equations; e.g., When does the company break even?	Transfer
		Graph the solutions of a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality). and graph the selution set to a system of linear inequalities in two variables as theintersection of the correspending half-planes.	
		Graph a linear inequality.	Surface
		After graphing a linear inequality, give possible solutions.	Deep
		FUNCTIONS: INTERPRETING FUNCTIONS	
F.IF. 1	Enhanced	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of fcorresponding to the input x. The graph of f is the graph of the equation $y=f(x)$	
		Identify the domain as the set of inputs (x values) and the range as the set of outputs (y values).	Surface
		If f is a function, each input is assigned to only one output.	Deep
F.iF. 7		Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
	Mastery	Graph linear, quadratie andabselute value funetions show intercepts, maxima, minima and end behavior.	
		Graph linear equations.	Surface
		Graph linear equations using intercepts.	Deep
F.IF.8A	Essential	Write a function in different but equivalent forms to reveal and explain different properties of the function. Use different forms of linear functions, such as slope-intercept, standard, and point-slope form to show rate of change and intercepts.	
		Recognize the components of slope-intercept form, standard form, and point-slope form.	Surface
		Compute x-intercept and y-intercept.	Surface
		Write a linear function using rate of change and/or intercepts.	Deep
		GEOMETRY: CONGRUENCE	
G.co. 1	Enhanced	Verify experimentally the properties of rotations, reflections, translations, and symmetry.	
		Use patty paper or geometry software to recognize the properties of rotations, reflections, and translations.	Surface
G.CO.2	Enhanced	Recognize transformations as functions that take points in the plane as inputs and give other points as outputs and describe the effect of translations, rotations, and reflections on two-dimensional figures.	

$\begin{gathered} \text { Auburn } \\ \text { Washburn } \end{gathered}$	AWLOs	MATH 1 (02061/02062) 2019	GRADES 7 -12
$\begin{aligned} & \text { Number } \\ & \text { refers us to the } \\ & \text { state or national } \\ & \text { standard. } \end{aligned}$		STANDABSSLAW Learinin Ofivecives	
¢.00.7	tial		Surace
			Surface Dee
G.GPE6	Essential	GEOMETRY: EXPRESSING GEOMETRIC PROPERTIES WITH EQUATIONS	
		Use coordinates to prove simple geometric theorems algebraically, including the use of slope, distance, and midpoint formulas. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle.	Surace
G.GPE 7	Essential	Given two ordered pais, find the slope, distance, and midpoint.	
		Using the isistance formula, detesmine if two segments are congruent.	Deep
		Using midpoint, determine if a segment, ine, or point is the bisector of the segment.	Deep
		Prove the slope criteria for paralel and perpendiculiar lines and use them to solve	
			Surface
		Slope. G GEOMETRY: SIMILARITY, RICHT TRIANGLES, AND TRIGONOMETRY	
¢.SRTT 2	Enhanced	Recoonize transtormations as functions that take point in the plane as inputs and give other points as outputs and describe the effect of dilations on two-dimensional figures.	
		Use the coordinates to perform dilations, e.g, $(x, y)) \rightarrow-(3 x, 3 y)$ dilites the shape by factor of 3 trom the origin.	
		NUMBER AND QUANTITY: REAL NUMBERS STATISTICS: INTERPRETING GATEGORICAL AND QUANTITATIVE DATA	Surface
N.RN. 1	Mastery	Know and apply the properties of integer exponents to generate equivalent numerical and algebraic expressions.	
STD.	Master)	Use the properies of exponents tos simplif expresios.	Surace

MATH 1 (02061/02062)
helps us prioritize time and interventions.

STANDARDS/AW Learning Objectives
Standards give us broad expectations. AWLOs describe local teaching expectations and are what we teach to address the standards.
describes the level at which the AWLO are written, providing guidance for planning transformations. Boldfaced planning transformations. Boldfaced and Social objectives are used to
support goal.

Given a set of data (table, list, etc.), interpret the rate of change and the intercept.
Deep

